Godel: Matematica coerente ma incompleta.

Vogliamo valutare se questa frase è vera. “Questa affermazione non può essere dimostrata“.

  1.  Se ritengo che essa sia  vera, significa che essa non può essere dimostrata, cioè che non può essere verificata;
  2.  Se ritengo che essa non sia vera, significa che essa può essere dimostrata, cioè che può essere verificata;

Nel caso 1 la frase è vera ma non può essere verificata; nel caso 2) la frase non è vera ma può essere verificata. In entrambi i casi comunque essa è sia vera che falsa.

Analogamente,  “Questa frase è falsa”  :  1 Se ritengo che sia vera significa che è falsa; 2) Se ritengo che non sia vera significa che non è falsa.

Indecidibilità. Queste frasi/formule sono indecidibili, cioè non si può decidere se sono vere o false. Ossia non si può dimostrare nè che la frase-formula (φ) sia vera, né che sia non vera (¬φ).  Si noti che queste frasi sono autoreferenziali, cioè si riferiscono a se stesse. Una teoria matematica si ritiene tale se è sufficientemente espressiva, auto-referenziale e in grado di rappresentare funzioni ricorsive, ovvero se permette di definire i numeri naturali (1, 2, 3, …).

Teoria completa. Una teoria T si definisce completa se è possibile in T dimostrare o confutare formalmente qualsiasi enunciato nel linguaggio della teoria, ovvero se per ogni formula φ è possibile o dimostrare φ   o dimostrare il suo contrario ¬φ. In essa cioè non esistono formule indecidibili.                                                                         Viceversa una teoria T si definisce incompleta se esiste una formula φ  che non è possibile dimostrare o  dimostrare il suo contrario ¬φ. Cioè se al suo interno esistono formule indecidibili ( autoreferenziali).

Teoria coerente (consistente). Una teoria si definisce coerente se in essa è  impossibile dimostrare una contraddizione, (cioè non è possibile dimostrare  che una formula φ sia vera e che sia vera la sua negazione (¬φ). Viceversa una teoria è incoerente se al suo interno è possibile dimostrare una formula contraddittoria, ossia non esiste una formula φ  indecidibile. Ovvero esiste una formula φ per cui è possibile dimostrare tale formula φ e la sua negazione ¬φ.

Primo teorema di incompletezza di Gödel. Come detto sopra, in ogni teoria matematica coerente T è sempre possibile definire una formula logica φ indecidibile,  ossia è sempre possibile definire una formula che non può essere né dimostrata né confutata al suo interno. (La teoria è incompleta in quanto non riesce ha dimostrare una formula  indecidibile). 

Dal fatto che in una teoria coerente-consistente esiste almeno una formula  indecidibile, si dimostra il  Secondo teorema di incompletezza di Gödel:     Nessun sistema coerente (essendo incompleto), può dimostrare la sua stessa coerenza.

Si giunge cioè al risultato sconcertante che ogni teoria matematica coerente è incompleta  e non è autoconsistente, (non può dimostrare la propria consistenza).        In altre parole si dimostra matematicamente che essa riconosce i propri limiti.

Da wikipedia: Il primo teorema di incompletezza di Gödel dimostra che qualsiasi sistema che permette di definire i numeri naturali è necessariamente incompleto: esso contiene cioè affermazioni di cui non si può dimostrare né la verità né la falsità.

Ciò che Gödel ha mostrato è che, in molti casi importanti, come nella teoria dei numeri, nella teoria degli insiemi o nell’analisi matematica, non è mai possibile giungere a definire la lista completa degli assiomi che permetta di dimostrare tutte le verità. Ogni volta che si aggiunge un enunciato all’insieme degli assiomi, ci sarà sempre un altro enunciato non incluso.

Consideriamo ad esempio la geometria euclidea composta da 5 assiomi (a proposito si è dimostrato che sono necessari 21 e non 5 assiomi per la nostra geometria euclidea), essa è coerente ma è incompleta in quanto si possono aggiungere altri assiomi.  Se si elimina un assioma, ad esempio il postulato delle parallele,  si ottiene un’altro sistema incompleto ma coerente  (nel senso che il sistema non dimostra tutte le proposizioni vere). L’essere incompleto significa che esso non include tutti gli assiomi necessari a caratterizzare un specifico modello, ma a caratterizzare più modelli (geometria euclidea e geometrie non euclidee).

 

Godel: Matematica coerente ma incompleta.ultima modifica: 2018-06-23T14:00:39+02:00da programmiexcel
Reposta per primo quest’articolo