La luce come Sistema di Riferimento Assoluto.

Il Sistema di Riferimento Luce e l’effetto Sagnac.

 

PREMESSA: Sebbene l’effetto Sagnac sia noto da oltre 100 anni e sia utilizzato in diverse applicazioni esso  viene considerato un fenomeno fisico scomodo e mal digerito dalla comunità scientifica, in quanto si pone in contrasto con  la Teoria della Relatività Ristretta. Esso, a differenza della RR che considera tutti i sistemi relativi, dimostra  che esiste un sistema di riferimento assoluto. 

Ci si pone la domanda: può un osservatore all’interno del proprio sistema verificare il suo movimento?  La domanda non è completa in quanto non specifica rispetto a cosa il sistema è in moto. Sappiano che la velocità della luce (come ha scoperto Maxwell) dipende dalle proprietà del mezzo  in cui essa si propaga. Se lo spazio è isotropo (uguale in ogni direzioni) anche la luce ha la stessa velocità in ogni direzione.  La luce cioè non viene “trascinata” dal moto della sorgente o dall’etere. Premesso ciò, consideriamo   una  sorgente che, nell’istante to= 0  e in un punto O dello spazio, emette un lampo di luce. Indipendentemente dal moto della sorgente dal centro O si propaghera’ una sfera di luce  di  velocità c, che nell’istante t  avrà raggio d= t*c.  Quanto sopra si verifica ogni volta che una qualsiasi sorgente luminosa emette delle radiazioni. Si ritiene allora possibile considerare questo sistema di riferimento come “assoluto”,  in quanto solo in tale sistema i raggi viaggiano (senza contrazione spaziale e dilatazione temporale) con la stessa velocità in ogni direzione. Si ripropone allora la domanda in questi termini: supposto che esista un sistema di riferimento”privilegiato”, può un osservatore all’interno del proprio sistema verificare il suo movimento rispetto a tale sistema privilegiato?  Se un osservatore S0 con la sua sfera è solidale a tale sistema dovrebbe vedere i raggi arrivare alle pareti della sfera nello stesso istante. Se l’osservatore S’ è in  moto rispetto a tale sistema dovrebbe, invece, rilevare che su una parete il raggio arriva prima dell’altro raggio sull’altra parete.

Negli articoli Relatività Ristretta e Diagramma… di Minkowski osserviamo che i 2 raggi che vanno verso le pareti, qualunque sia la velocità v del sistema, partono e ritornano al centro della sfera nello stesso istante, mentre toccano le pareti in istanti diversi, dipendenti dal moto del sistema. Considerato che la velocità  della luce è costante possiamo prendere come termine di misura  proprio i due istanti di tempo è scegliere come privilegiato quel sistema che ha tali tempi simultanei.  La relatività ristretta, che si basa in definitiva sulla relatività della simultaneità di 2 eventi  in quanto dipendente dal moto del sistema, ritiene che non esista un sistema di riferimento privilegiato in quanto i raggi di luce, compiendo un percorso di andata e ritorno, arrivano sempre insieme. Secondo  Selleri e Serafini  solo considerando la velocità della luce “di solo andata”  possiamo discriminare il sistema privilegiato. Se consideriamo la velocità della luce “di andata e ritorno” infatti troviamo che la velocità della luce è costante in tutti i sistemi di riferimento inerziali (come affermato nel principio di relatività di Einstein). Selleri afferma quindi che esiste una solo sistema di riferimento inerziale in cui la luce si propaga in maniera isotropa,  ossia che la velocità della luce rimane sempre la stessa esclusivamente in questo sistema inerziale “privilegiato” e l’esperimento Sagnac ne è la prova. 

 L’esperimento di Sagnac considera due raggi che si propagano in opposte direzioni in un percorso di solo andata. L’effetto Sagnac  è il fenomeno di diffrazione creato da due raggi di luce che in un discoin rotazione effettuano percorsi circolari in direzioni opposte. Se il disco è  fermo (non in rotazione) i due raggi arrivano nello stesso istante nel punto di partenza del disco e non si ha diffrazione. Se è  in rotazione, poiché il punto di partenza ruota un raggio arriva prima dell’altro in tale punto per cui  si crea una diffrazione. Esso è la prova sperimentale che esiste un sistema di riferimento privilegiato in cui la luce si propaga in maniera isotropa (nessuna diffrazione). L’ effetto  Sagnac è utilizzato in varie strumentazioni come il laser giroscopio anulare per la navigazione e nel GPS in cui bisogna tener conto dell’effetto Sagnac proprio perché la tecnica di trasmissione del segnale è “di solo andata”. Selleri e Serafini parlano di una rilettura e modifica del principio di Einstein in questi termini: “la velocità di andata e ritorno della luce è la stessa in tutti i sistemi di riferimento inerziali”. Essi affermano che sarebbe questa l’unica, soddisfacente e significativa formulazione del principio di costanza della velocità della luce, e che l’effetto Sagnac ne costituisca la prova sperimentale.

Il giroscopio laser anulare sfrutta l’effetto Sagnac per la determinazione della velocità angolare. Il fascio laser entra nell’anello nel punto A e viene diffuso sia nella direzione oraria che in quella antioraria. Se l’anello (interferometro) è fermo, i due fasci di luce si incontreranno nel punto A, dopo un tempo uguale dato da t = 2pr/c  dove r è il raggio del percorso circolare e c la velocità della luce. Al contrario se il sistema fisico è in rotazione, ad esempio nel verso orario, con velocità angolare W intorno ad un asse passante per il centro C e perpendicolare al piano dell’interferometro, i due fasci impiegheranno tempi diversi per ritornare in A, dal momento che il punto A ruota per cui fascio orario deve percorrere un po’ più di 2pr/c  e quello antiorario un po’ meno. Tale differenza di tempo crea con detti raggi una  figura di interferenza  da cui si può ricavare la velocità angolare del giroscopio (e della navicella con cui esso è solidale) rispetto al Sistema Luce..  Analogamente un interferometro lineare posto in  sistema in moto può sfruttare l’effetto Sagnac (utilizzando due fasci laser inviati in direzioni opposte) per la determinare la velocità lineare del Sistema rispetto al Sistema Luce.

ESPERIMENTO 1: Sappiamo che a causa del moto della Terra rispetto alla luce delle stelle  si verifica il fenomeno dell’aberrazione luminosa. Su youtube sono stati considerati dei fotoni con direzione verticale (provenienti dalle stelle) . I fotoni che possono essere osservati da un cannocchiale in moto con velocità v (ossia i fotoni che arrivano sul fondo del cannocchiale), hanno un angolo di aberrazione/inclinazione i= v/c. Mentre se il cannocchiale fosse fermo (v=0) i fotoni osservabili sarebbero i fotoni verticale e l’aberrazione sarebbe nulla. Se conosciamo la direzione dei fotoni e l’angolo di aberrazione, possiamo calcolare la velocità del nostro sistema in moto.    Nel filmato  viene emesso un fotone lungo una direzione. Tale fotone riesce ad attraversare un tubo/condotto, solidale con il nostro sistema in moto con velocità v, se la direzione del fotone ha una inclinazione i= v/c rispetto alla direzione del tubo. Il valore dell’aberrazione/inclinazione dà la componente, ortogonale alla direzione del tubo,  della velocità v  del sistema rispetto alla luce. Analogamente possiamo calcolare le altre 2 componenti ortogonali e ricavare la velocità del nostro sistema nello spazio. L’aberrazione della luce, a mio parere, contraddice il 2° principio della relatività secondo cui la velocità della luce è costante in tutti i sistemi di riferimento (cioè una persona sia da ferma sia che in movimento percepisce la stessa velocità della luce). L’aberrazione luminosa infatti fa percepire la luce in una direzione diversa dalla direzione effettiva a causa del movimento v dell’osservatore.  La direzione risultante r = c-v (differenza vettoriale della velocità luce c e della velocità  dell’osservatore v), costituisce la velocità vettoriale della luce percepita dall’osservatore.

ESPERIMENTO 2: Consideriamo un sistema di riferimento inerziale, si vuole mettere in relazione tale sistema con  il “particolare” Sistema Luce. Sfera Sistema RiferimentoSupponiamo che il nostro sistema sia costituito da una sfera in moto con una ipotetica e sconosciuta velocità v    (che vogliamo determinare) rispetto   al “Sistema Luce“.      Se dal centro B della sfera si emettono dei raggi di luce in direzioni opposte, lungo la direzione del moto;  rispetto al “Sistema Luce” la parete A si avvicina al centro mentre la C se ne allontana.    Problema cruciale è  la sincronizzazione dei 2 orologi.  Per calcolare i tempi  ta e tc è necessario sincronizzare 2 orologi.  Possiamo sincronizzare i 2 orologi al centro della sfera, quindi trasportarli lentamente e con uguale velocità alle 2 pareti, così da avere dei rallentamenti trascurabili  e comunque uguali nei due orologi. Si dovrebbero quindi calcolare i tempi:

  • per il raggio da B ad A: c*ta+v*ta = L      →    ta = L /(c+v)       (5a)
  • per il raggio da B a C: c*tc – v*tc = L       →    tc = L /(c-v)       (5b)

Poichè  tc – ta = Δt    sottraendo membro a membro si ha :  Δt =  L*(1/(c-v) -1/(c+v)) = 2*v* L/(c²-v²)  ≈ 2*v*L/c²   da cui   v = Δt *c² /2L   (6) .  In dette relazioni nella 1a iterazione si considera nulla la  contrazione della lunghezza. Nella 2a iterazione si tiene conto della v di 1a approssimazione,  quindi  affinare il calcolo con un processo iterativo. Non è superfluo rilevare che tale velocità viene calcolata non considerando altri sistemi esterni: le misure di tempo e di spazio  sono state effettuate con orologi  e con l’asta  solidali  del sistema. Supponendo che la Terra (ruotando attorno al sole, che a sua volta ruota attorno al centro della galassia …) abbia una velocità v = 3.*000 m/secondo, posto L = 1.000 mt. per la (6)  si dovrebbe misurare una differenza di tempo Δt = 2*3.000* 1.000/(9×10^18)  = 6/9* 10^-12 secondi. Mentre se si misura, ad esempio, un  Δt  = 10^-10  dalla  (6) si trova una velocità  v  =  Δt*c² / 2*L =  10^-12* 9*10^18/2.000 = 4.500 m/s. Gli orologi atomici al cesio che hanno una precisione dell’ordine di 10^-16 sarebbero in grado di rilevare tale differenza di tempo e misura pertanto la velocità del sistema rispetto al Sistema Luce, unico sistema di riferimento privilegiato in cui la luce si propaga in maniera isotropa.

Un’altro metodo  di calcolo è quello di considerare le diverse velocità di avvicinamento tra  raggi e parete anteriore e posteriore:

  • velocità  raggio-paretepost: v1 = (c+v)/(1+v*c/c2)    →    v1 = (c+v)/(1+v/c)   =  c*(c+v)/(c+v) → v1 = c;
  •  velocità raggio-pareteant: v2 = (c-v)/(1+v*c/c2) → v2 = (c-v)/(1+v/c) →   v2 = c*(c-v)/(c+v).

Indicato con r il raggio della sfera, si hanno i tempi:  t1 = r/v1 = r/c   e  t2 =  r/v2 =  r/c*(c+v)/(c-v)   posto  t1/t2 = Δ   si ha:  Δ = (c-v)/(c+v)      (1)       da cui si ricava                      v = c*(1-Δ)/(1+Δ)     (2)   Misurati i tempi t1 e t2,  si ricava Δ, e con la (2) la velocità v che il sistema sfera avrebbe rispetto al Sistema di Riferimento Luce.

L’esistenza di un sistema di riferimento assoluto quale è il Sistema Luce implica l’esistenza di un tempo assoluto, di uno spazio assoluto e di una velocità assoluta. Tutti i sistemi inerziali possono riferirsi infatti a tale sistema di riferimento privilegiato. Noto tale sistema di riferimento può essere calcolata la “reale” energia cinetica dei corpi

Si veda:

Teorie alternative alla Relatività e alla  natura  del tempo. 

https://www.google.com/url?sa=t&source=web&rct=j&url=http://www.sisfa.org/wp-content/uploads/2013/03/16-34Selleribari.pdf&ved=2ahUKEwjsxZP2gZrkAhXKwKQKHU1xDJAQFjAHegQIARAB&usg=AOvVaw0lnRK426BMZjZbG_oUUhuW

http://cdlfbari.cloud.ba.infn.it/wp-content/uploads/file-manager/CIF/Triennale/Tesi%20di%20laurea/13-14-FRANCHINI%20Giovanni.pdf

http://www.giuseppevatinno.it/wordpress/?p=1669.

http://www.brera.unimi.it/sisfa/atti/1996/selleri.htm.

La luce come Sistema di Riferimento Assoluto.ultima modifica: 2018-03-31T23:23:56+02:00da programmiexcel
Reposta per primo quest’articolo