Archivio Tag: luce

Le leggi fisiche sono invarianti rispetto alla luce

Spazio e Tempo Assoluti  

Se volete sapere perché e in che modo lo spazio e il tempo si deformano potete leggere Il regno di LuxIn una pagina e con un filmato di 1 minuto viene spiegato come la luce con la sua velocità “definisce” il tempo e lo spazio dei corpi in funzione del loro moto. Se volete approfondire l’argomento leggete Spazio e Tempo. 

Oliver-HeavisideChi è costui nella foto?   Fino a pochi mesi fa non lo conoscevo nemmeno io è Oliver Heaviside. Rispetto a tanti altri “geni” della fisica ritengo che egli sia uno tra i più dimenticati e sconosciuti. Quasi  tutti hanno sentito parlare delle equazioni di Maxwell ma pochissimi sanno che esse sono costituite da 20 equazioni con una matematica complicatissima come i quaternioni.  Le 4 equazioni che oggi si studiano come Equazioni di Maxwell sono state scritte da questo individuo con un lavoro di pulizia e di semplificazione delle 20 equazione differenziali. Difficilmente le equazioni scritte da Maxwell potevano essere capite e gestite dai fisici.

Oliver Heaviside nacque a Camden Town, un sobborgo di Londra, il 18 Maggio 1850, da una famiglia povera e numerosa. A causa della scarlattina presa quando era molto piccolo perse gran parte dell’udito. Tale l’infermità gli resero molto difficili i rapporti con gli altri ragazzi e gli sconvolse per sempre la vita. I suoi risultati scolastici comunque erano molto buoni. L’unica materia in cui andava male era la geometria che trovava astrusa, ciò risulta strano per un personaggio che avrebbe segnato la storia della matematica e dell’elettromagnetismo. All’età di 16 anni Oliver, non ritenendolo il suo ambiente ideale, decide di abbandonare la scuola nonostante i buoni risultati. Poiché era il periodo d’oro dell’elettricità impara da solo l’alfabeto Morse e chiede al suo zio, il famoso Charles Wheatstone, di trovargli un lavoro. All’età di  18 anni si ritrova  con uno stipendio e un lavoro in una società di telegrafi.  Oliver non si può dire che amasse la scuola, ma di certo amava lo studio.  Dopo solo sei anni, alla giovane età di 24 anni, lascia il lavoro proprio per dedicarsi esclusivamente a studiare gli argomenti che più lo interessano.

Ciò che lo interessa soprattutto è la teoria dei campi elettromagnetici di J.C. Maxwell. Da autodidatta, dedicandovisi anima e corpo, studiò l’opera del fisico scozzese. Il grande fisico scozzese  alla sua morta lascia un lavoro mastodontico, complicatissimo, costituito da tecniche matematiche complesse (i quaternioni, ad esempio) e ben diverso dalle 4 eleganti equazioni che oggi portano (erroneamente) il suo nome.

Heaviside si trova a sua agio nella nuova teoria elettromagnetica e ne diventa un esperto come nessun altro: “ha una capacità di visione, di comprensione così profonda dei fenomeni elettromagnetici da rivoluzionare per sempre  tale campo della fisica. Moltissimi termini elettrici sono stati introdotti da Oliver: impedenza, reattanza, induttanza, permettibilità, suscettibilità e molti altri; sua l’invenzione del cavo coassiale, suoi i nomi di diversi effetti di elettrotecnica (effetto “pelle”, equazione delle linee) e tanti altre. Molti sono i successi,  di fondamentale importanza per lo sviluppo dell’elettrotecnica, che non sono associati al suo nome. Per portare un esempio per primo, già nel 1888, Heaviside aveva calcolato la contrazione del campo elettrico per le cariche in movimento che avrebbe portato Lorentz a calcolare le contrazioni del corpi in movimento.

Oliver Heaviside è stato uno scienziato sperimentale, tuttavia il suo lavoro più straordinario è stato essenzialmente  teorico. Come spesso capita per molti scienziati sperimentali, la stima e la gloria nel tempo  venne  riversata ai fisici  teorici, più facilmente premiati con la definizione di “geni”.

I grandi fisici suoi contemporanei riconoscevano senza difficoltà la grandezza di Heaviside: Lord Kelvin lo definì “un’autorità”;  Lodge, lo presentò come uno scienziato “le cui profonde ricerche nel campo delle onde elettromagnetiche si sono spinte più lontano di quanto chiunque possa ancora comprendere”; e a sostenere la sua candidatura alla Royal Society erano gli stessi Kelvin e Lodge, Poynting, Fitzgerald e altri. Ma Oliver dai capelli rossi, piccolo di statura e mezzo sordo era abituato ad essere sulla difensiva, e sembra addirittura che gli onori che riceveva lo spaventassero più di quanto gli facessero piacere. Dopo qualche anno si ritirò in campagna, si isolò, e probabilmente peggiorò anche il rapporto con sé stesso, se è vero che era solito firmare i suoi documenti con la scritta “W.O.R.M.”, che però fingeva solo d’essere un acronimo.

Aberrazione cinematica

Aberrazione cinematica. Aberraz PioggiaViene definita aberrazione cinematica la diversa direzione della pioggia, luce ecc.  percepita dall’osservatore in moto rispetto all’osservatore fermo. Ad esempio quando piove in assenza di vento e stiamo fermi è evidente che le gocce che ci bagnano stanno lungo la nostra verticale. Se la pioggia cade con velocità p e l’osservatore è in moto con velocità v, questi, vede cadere la pioggia con una velocità complessiva r = p -v, mentre le gocce che ci colpiscono ogni secondo (Δt = 1) stanno su una colonna avente inclinazione v/p, rispetto alla verticale, e lunghezza L= 1*(p2+v2)1/2 metri. Per tale motivo ad esempio quando si viaggia in auto la quantità di pioggia sul parabrezza aumenta mentre su lunotto diminuisce.

Posto p= c e indicato con Φ  l’angolo tra le velocità c e v, il vettore risultante r = c-v forma con c l’angolo di aberrazione Ψ con:   Aberraz direzioni            tan(Ψ) = BC/AB = v*sen(Φ)/(c+v *cos(Φ))     (1)     mentre il modulo r = ((c+v *cos(Φ))2+ (v*sen(Φ))2)1/2     (2)

Se ruotiamo la velocità c attorno ad O e lasciamo invariata la velocità v,  si ottiene un cerchio di centro O e raggio c, in cui possiamo misurare, per ogni angolo Φ compreso tra i vettori c e v, l’angolo di aberrazione Ψ e il modulo di r.   Dalla (1)  si rileva che per Φ =90° l’aberrazione tan(Ψ) = v/c  è massima   (c e v sono ortogonali) mentre per Φ =90° l’aberrazione Ψ =0 (c e v hanno la stessa direzione). Dalla (2) si rileva che il vettore r  converge sempre nel punto C distante v da O e varia da un massimo di  r  = c+v ad un minimo di r = c-v.

Aberrazione stellare. Si chiama aberrazione stellare la direzione apparente delle stelle dovuta alla velocità relativa Terra-Luce. Infatti il moto v della Terra attorno al Sole si compone con la velocità c della luce delle stelle. L’aberrazione è massima per le stelle poste nella direzione ortogonale al piano dell’eclittica, ossia ortogonale alla velocità v della Terra, mentre è nulla per le stelle poste sull’eclittica (ossia parallela alla velocità v della Terra).  Se si osserva la posizione della stella per un anno essa descrive una ellisse più o meno schiacciata dipendente dalla sua posizione rispetto al piano dell’eclittica. Infatti, poiché la Terra compie una rotazione attorno al Sole, la velocità v della Terra compie una rotazione (ellisse), così come la risultante r = c-v  della velocità c della luce  e v della Terra.

In aberrazione stellare  sono rappresentati dei fotoni  con direzione verticale mentre il cannocchiale e in moto orizzontale. I fotoni osservabili dal cannocchiale (ossia che lo attraversano) in moto con velocità v, hanno un angolo di inclinazione/aberrazione v/c. Quando si è in moto,  come per le gocce di pioggia,  il numero di fotoni che ci arriva dipende dalla direzione del nostro movimento rispetto alla direzione dei fotoni ed è proporzionale alla risultante r dei vettori velocità r = v .  Tale relazione (che descrive un fenomeno della natura), a parere dello scrivente, contraddice il 2° postulato della TdR.

Aberrazione relativistica – Ellisse di aberrazione. Se si osserva la volta celeste per trovare l’aberrazione di ogni stella possiamo considerare il cerchio sopra descritto, considerando v la velocità della Terra e la velocità c della luce delle stelle proveniente da tutte le direzioni. Tali direzioni a causa dell’aberrazione vengono percepite con direzione r e confluiscono nel punto C decentrato della velocità v. Nel caso in cui la velocità v fosse elevata per calcolare l’aberrazione occorre tenere conto della reale contrazione 1/γ (<1) del corpo lungo la direzione del moto. Per l’osservatore in moto: l’ellisse rossa corrisponde al cerchio mentre il cerchio suddetto di raggio c corrisponde all’ellisse blu di assi c e  c*γ .

Dalla (1) si ricava pertanto la relazione:  tan(Ψ) =  v*sen(φ)/ (c+v*cos(φ))*γ   (1a). Dalla quale si  rileva che per Φ =90°  tan(Ψ) = v/(γc) è massimo (c e v sono ortogonali) mentre per Φ =90° l’aberrazione Ψ =0.

Un altro modo per ricavare l’aberrazione relativistica utilizza l’esempio delle sfere in moto.  Abbiamo visto che la sfera in moto subisce una contrazione, pertanto per l’osservatore in moto la sfera (dei raggi) di luce viene vista come una ellisse  (di aberrazione) allungata nella direzione del  moto. Dalla sfere  in moto si osserva che i punti di contatto tra i raggi (che partono dal centro) e le pareti della sfera in moto compongono l’ellisse di aberrazione cercata.  L’osservatore solidale con Ellisse aberraz Sferala sfera ferma (nera)  non vede nessuna deviazione dei raggi. L’osservatore solidale con la sfera in moto (rossa e contratta lungo la direzione del moto) vede i raggi di luce deviati. Infatti i raggi partono dall’origine O (0;0), toccano le pareti della suddetta sfera in istanti diversi e arrivano al centro O’ contemporaneamente dopo un tempo 2t’ = 2t*γ (con γ =1/(1-v2/c2)1/2).  In tale intervallo di tempo il centro O si sposta in O’ di OO’= 2v*t’ = 2vt*γ, mentre i raggi nel tempo 2t’ = 2t*γ percorrono tutti lo stesso spazio OPO’ = 2ct*γ. Poiché i raggi partono tutti da O e arrivano in O’ nello stesso istante, hanno lunghezza uguale, i punti di contatto raggi-sfera (rossa) Pi descrivono l‘ellisse blu di fuochi O e O’, semiasse maggiore RS = ct*γ, semiasse minore r = ct (poniamo r= ct =1).

Si ha:   OO’= 2v*t’ = 2vt*γ ,    PS = ct = 1 ,   OS = OO’/2 = vt*γ,    RS = ct*γ;

RO = RS-OS = ct*γ  – vt*γ = ct*(1-β) *γ      RO =  (1-β) *γ = (1-v/c)* γ,

OS = RS- RO = γ – (1-β) *γ = β*γ ,    RO’ = RO + OO’ =  (1-β) *γ  + 2β*γ =   (1+v/c)*γ 

 Si fa osservare che tutti i raggi di luce, che partono dalle pareti della sfera in moto, arrivano nel fuoco O’ contemporaneamente. Cioè l’osservatore in moto v vede arrivare i raggi di luce, provenienti  dalla sfera (celeste) nel punto O’, deviati e deformati secondo tale ellisse (di aberrazione).

L’ellisse di aberrazione si ricava quindi dilatando la sfera nella direzione del moto di  un fattore γ per cui il punto C , in cui convergono i raggi, dista v*γ da O. Si evidenzia che nell’aberrazione relativistica le velocità radiali c e la velocità v si sommano e si sottraggono come per l’aberrazione cinematica.

L’aberrazione della luce, a mio parere, contraddice il 2° principio della relatività secondo cui la velocità della luce è costante in tutti i sistemi di riferimento (cioè una persona sia ferma sia in moto percepisce la stessa velocità della luce). L’aberrazione luminosa infatti fa percepire la luce in una direzione diversa dalla direzione effettiva a causa del movimento v dell’osservatore.  La direzione risultante r = c-v (differenza vettoriale della velocità luce c e della velocità  dell’osservatore v), costituisce la velocità vettoriale della luce percepita dall’osservatore.

Effetto Doppler relativistico.  L’effetto Doppler (blueshift e redshift), che è l’aumento/diminuzione della frequenza  a causa del moto relativo tra sorgente e osservatore, ha la stessa formula dell’aberrazione a meno di sostituire la velocità v dell’osservatore con la velocità relativa tra osservatore e sorgente (stelle). Pertanto l’ellisse di aberrazione  non è valida per l’effetto Doppler.

L’effetto Doppler relativistico in avvicinamento e in allontanamento, ricordando che β =v’/c e che v’ è la velocità Osservatore-Stella, vale :

RO’ =  (1+β)*γ  =   (1+β)/ (1-β2)1/2;= ((1+β)2/ (1-β2))1/2   =  ((1+β)/ (1-β))1/2 

RO =   (1-β)*γ  =   (1-β)/ (1-β2)1/2;= ((1-β)2/ (1-β2))1/2   =  ((1-β)/ (1+β))1/2

Sistema Luce e nuovo significato delle grandezze relativistiche.

 Se si osservano le equazioni (1) e (1a) si nota che in entrambi l’aberrazione si ottiene dalla somma vettoriale della velocità v e della velocità c della luce proveniente da tutte le direzioni. In entrambi  i casi la risultante r di c e di v non rimane costante, ciò, in disaccordo con il 2° postulato della Relatività che prevede la costanza della velocità della luce c in tutte le direzioni. D’altra parte si è visto che, per ottenere l’ellisse di aberrazione relativistica, non si è applicato il 2° postulato della relatività, ma la condizione della costanza della velocità della luce in un percorso di andata e ritorno.

L’ellisse di aberrazione dimostra cioè che i sistemi di riferimento non sono tutti uguali per cui il 2° postulato è errato. Infatti, se l’ellisse di aberrazione è una circonferenza la velocità v dell’osservatore deve essere nulla per tutti i raggi di luce, qualunque sia la loro direzioni. Tale sistema può considerarsi un sistema di riferimento privilegiato, a differenza di quanto prevede la Relatività.   Poiché per tale sistema non si hanno fenomeni di aberrazione della luce esso si potrebbe chiamasi “Sistema Luce”.

Definito in tal modo il “Sistema Luce”, facendo riferimento ad esso possiamo definire la velocità (assoluta) di tutti gli altri  sistemi. Definire, in maniera concreta (e non come vengono definite dalla Relatività),   l’energia a riposo e l’energia relativistica  riferita al Sistema Luce.

Disgressioni sul significato temporale e spaziale dell’aberrazione.

Poiché  l‘energia (della luce) può essere definita come il numero n di quanti h nell’unità di tempo t: E= h*v = h*n/t (in quanto  v= n/t) e considerato che il tempo si dilata con la velocità: t’ = t*γ  (per cui l’ellisse si dilata), si può supporre che l’energia relativistica: E’ =n*h/t’ aumenti in quanto in un intervallo di tempo più lungo scorra più luce. Ossia, fissato lo spazio, maggiore è il tempo t’ maggiore è il numero di quanti (fotoni) che attraversano tale spazio.

Poiché la quantità di moto della luce può essere definita come il numero n di quanti h nell’unità di spazio L:                P = h*n/L (in quanto la λL/n) e considerato che lo spazio si contrae con la velocità L’=L/γ  si può supporre  che la quantità di moto relativistica: P’ = h*n/L’ diminuisca in quanto, in un intervallo di spazio più corto, sia presente meno luce. Ossia fissato il tempo, minore è lo spazio L’ minore è il numero di quanti (fotoni) contenuti in tale spazio.

Non sembra superfluo, altresì, supporre dei legami tra onde stazionarie in un atomo e i percorsi di andata e ritorno delle onde di luce. …